Home

# Sympy solveset

sympy.solvers.solveset.linsolve (system, *symbols) [source] Âķ Solve system of N linear equations with M variables, which means both under - and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. Zero solutions throws a ValueError, where as infinite solutions are represented parametrically in terms of given symbols. For unique solution a FiniteSet of ordered tuple is returned The main function for solving algebraic equations is solveset. The syntax for solveset is solveset (equation, variable=None, domain=S.Complexes) Where equations may be in the form of Eq instances or expressions that are assumed to be equal to zero. Please note that there is another function called solve which can also be used to solve equations (Using solveset\_real does this automatically.) >>> R = S.Reals >>> x = Symbol('x') >>> solveset(exp(x) - 1, x, R) {0} >>> solveset_real(exp(x) - 1, x) {0} The solution is mostly unaffected by assumptions on the symbol, but there may be some slight difference: >>> pprint(solveset(sin(x)/x,x), use_unicode=False) ({2*n*pi | n in Integers()} \ {0}) U ({2*n*pi + pi | n in Integers()} \ {0}) >>> p = Symbol('p', positive=True) >>> pprint(solveset(sin(p)/p, p), use_unicode=False) {2*n*pi | n in.

The solver module in SymPy provides soveset () function whose prototype is as follows â solveset (equation, variable, domain) The domain is by default S.Complexes. Using solveset () function, we can solve an algebraic equation as follows â These are the top rated real world Python examples of sympysolverssolveset.solveset extracted from open source projects. You can rate examples to help us improve the quality of examples. Programming Language: Python. Namespace/Package Name: sympysolverssolveset. Method/Function: solveset. Examples at hotexamples.com: 30 from sympy import pi, S, solve, solveset, nsolve, symbols (n_go, P_l, T, gamma_w, P_g, r, R_mol) = symbols ( 'n_go, P_l, T, gamma_w, P_g, r, R_mol', real=True) expr = -P_g + P_l - 3*R_mol*T*n_go/ (4*r**3*pi) + 2*gamma_w/r soln = solveset (expr, r, domain=S.Reals) soln1 = solve (expr, r) soln is of the form Complement (Intersection (FiniteSet (. Syntax : sympy.solve (expression) Return : Return the roots of the equation. Example #1 : In this example we can see that by using sympy.solve () method, we can solve the mathematical expressions and this will return the roots of that equation. from sympy import *. x, y = symbols ('x y') gfg_exp = x**2 - 4 solveset(sin(x) ** 1.0, x, Reals) -> ImageSet(Lambda(_n, 2*_n*pi), Integers) If we change 1.0 to an int we get: solveset(sin(x) ** 1, x, Reals) -> Union(ImageSet(Lambda(_n, 2*_n*pi + pi), Integers), ImageSet(Lambda(_n, 2*_n*pi), Integers)) Which is the correct answer. Not sure what is happening here though

### Solvers â SymPy 1

from sympy.solvers.solveset import linsolve. a = symbols ('a:%d' % (order)) def _makeDE (k): eq = f.diff (x, k) + Add (*[a [i]*f.diff (x, i) for i in range(0, k)]) DE = g (x).diff (x, k) + Add (*[a [i]*g (x).diff (x, i) for i in range(0, k)]) return eq, DE. eq, DE = _makeDE (order SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system. SymPy includes features ranging from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. It is capable of showing results in LaTeX

### sympy.solvers.solveset â SymPy 1.0.1.dev documentatio

1. sympy solveset FiniteSet in einem Fall zurÃžckkehrt, sondern eine Complement in einem anderen Fall 2 So mit einer Gleichheit einer Gleichung Ich fange und eine Fraktion, die ich fÃžr beide x zu lÃķsen, verwenden und y: mrs = y/x ratio = 2/5 x = sympy.solveset(sympy.Eq(mrs, ratio), x) y = sympy.solveset(sympy.Eq(mrs, ratio), y
2. It is recommended to use solveset()to solve univariate equations, sympy.solvers.solveset.linsolve()to solve system of linear equations instead of solve()and sympy.solvers.solveset.nonlinsolve()to solve system of non linear equations since sooner or later the solvesetwill take over solveeither internally or externally
3. One. identifies the transcendental form of an equation and the other. either solves it or recasts it into a tractable form that can be. solved by solveset. For example, an equation in the form ab^ {f (x)} - cd^ {g (x)} = 0. can be transformed to. \log (a) + f (x)\log (b) - \log (c) - g (x)\log (d) = 0
4. SymPy is a Python library for symbolic mathematics. It aims to be an alternative to systems such as Mathematica or Maple while keeping the code as simple as possible and easily extensible. SymPy is written entirely in Python and does not require any external libraries
5. >>> import sympy >>> x = sympy.Symbol(x) >>> f = sympy.sqrt(x) * sympy.sin(x) >>> sympy.solve(f.diff(), x) Traceback (most recent call last): File <stdin>, line 1, in <module> File C: \Users \mkastner \AppData \Local \Continuum \anaconda 3 \lib \site-packages \sympy \solvers \solvers.py, line 1174, in solve solution = _solve(f , *symbols, **flags) File C: \Users \mkastner \AppData \Local \Continuum \anaconda 3 \lib \site-packages \sympy \solvers \solvers.py, line 1584, in _solve.
6. Sympy solveset. Solveset, Solveset is designed to be independent of the assumptions on the variable being solved for and instead, uses the domain argument to decide the solver to >>> from sympy import exp, sin, Symbol, pprint, S >>> from sympy.solvers.solveset import solveset, solveset_real The default domain is complex. Not specifying a domain will lead to the solving of the equation in the complex domain (and this is not affected by the assumptions on the symbol)

### Python SymPy - symbolic computation in Python with symp

• Because sympy.solveset function expects the input equations to be equal to 0, indicating whether to substitute numerical values into the expression to return a float or to keep the ratio as a SymPy expression. Note: The string Equation can be passed to either the top or bottom arguments to utilize the equation stored either in enzyme_concentration_total_equation (for categorized_attr.
• always translate SymPy's result to a sage.set like above, making set notation the default even for the Maxima solver. A further problem is that output is different between SymPy's solve and solveset. The relation/boolean notation of solve can be translated to set notation for the reals however (see #24156)
• This is solved with SymPy by using the function solveset(). Solvest takes two parameters: the Eq function which takes two parameters: the equation and the value the equation needs to equal; the variable we are trying to solve; Solvset will return a set for all numbers that solve the equation

### python - sympy solveset FiniteSet in einem Fall

SymPy's solver module provides a set of functions whose prototype is as follows - solveset (equation, variable, domain) The domain is by default S.Complexes. Using the solveset function, we can solve an algebraic equation as follows - >>> solveset (Eq (x ** 2-9,0), x ) The following output is obtained - {â3, 3 Solvers: Extending solveset SymPy is a Python library for symbolic mathematics. Sympy has a powerful solve function that can solve a lot of equations, but due to its complex API and inability to give efficient output, solveset was implemented and is under development since 2014 The main function for solving algebraic equations is solveset. The syntax for solveset is solveset(equation, variable=None, domain=S.Complexes) Where equations may be in the form of Eq instances or expressions that are assumed to be equal to zero. Please note that there is another function called solve which can also be used to solve equations SymPy is a Python library for symbolic mathematics. It is one of the layers used in SageMath, the free open-source alternative to Maple/Mathematica/Matlab. When you have simple but big calculations that are tedious to be solved by hand, feed them to SymPy, and at least you can be sure it will make no calculation mistake ;-

### Solvers â SymPy Tutoria

Ich habe einige Gleichungen, die von einer Reihe von Variablen abhÃĪngen. Dazu bedient man sich sog. Ein derartiges Gleichungssystem, bei dem die L osung zu einem Anfangs-zeitpunkt und die Ableitung der L osung zu jedem Zeitpunkt tbekannt sind, nennt man Anfangswertproblem. Dazu gucken wir uns die folgende Gleichung an: ÃžÃž2x+23=xâ32|â2â(2x+2)â23=(xâ3)â22|Ausmultiplizieren bzw. I. I'm guessing that for edit 2 you did the same command sympy.solveset(the_equation, x) in which i will have to replace x by y. btw, i have an array of x values for which i want to obtain the values of y. how do i integrate that into this? you have solved this as x in terms of y, would i have to do it per array element or is there a more automatic method to do that? edit: using numpy arrays. Reduce a system of inequalities with nested absolute values. >>> from sympy import Abs, Symbol >>> from sympy.abc import x >>> from sympy.solvers.inequalities import reduce_abs_inequalities >>> x = Symbol('x', real=True) >>> reduce_abs_inequalities( [ (Abs(3*x - 5) - 7, '<'),. x, y, x0, y0, a = sym. symbols ('x y x0 y0 a') x1 = 1 y1 = 0 x2 =-1 y2 = 0 line1 = (y0-y1) / (x0-x1) * (x-x1) + y1 line2 = (y0-y2) / (x0-x2) * (x-x2) + y2 xa1 = list (sym. solveset (line1 + a, x)) xa2 = list (sym. solveset (line2 + a, x)) ya1 =-a ya2 =-a line3 = (ya2-y1) / (xa2-x1) * (x-x1) + y1 line4 = (ya1-y2) / (xa1-x2) * (x-x2) + y2 # point 5 is where line3 and line4 intersect x5 = list (sym. solveset (line3-line4, x)) y5 = line3. subs (x, x5) line5 = (y0-y5) / (x0-x5) * (x-x5. SymPy objects can also be sent as output to code of various languages, such as C, Fortran, Javascript, Theano, and Python. SymPy uses Unicode characters to render output in form of pretty print. If you are using Python console for executing SymPy session, the best pretty printing environment is activated by calling init_session() function

Solveset â SymPy 1 . SymPy already has an abstract notion of a Set as well as an implementation of real intervals (like (0,1] ) and an implementation of Unions of Intervals (like (0,1] U [2,3) ). This week I've added an implementation of Finite Sets (like the dice example above) and an implementation of Cartesian Product Sets sympy integration limits error: TypeError: bad operand type for unary -: 'tuple' - StackOverflow. ããåãããŠãïž įĄéåĪ§ããæ­ĢãŪåŪæ°ãļįĐå. Discuss that sympy has some basic plotting but that I do not recommend it. Point at matplotlib and numpy chapters and also specify that we will be using other things that are seen in future chapters (list comprehensions). SymPy æŊäļäļŠįą Python čŊ­čĻįžåįįŽĶå·čŪĄįŪåšãæå°åĻæŽæäļ­įŪčĶå°äŧįŧåĶä―åĐįĻ SymPy čŋčĄįŽĶå·čŪĄįŪãåĻäŧįŧ SymPy äđåïžæäŧŽéĶåčĶæįĄŪä―č°įŽĶå·čŪĄįŪïžčŪĄįŪæšäŧĢæ°įģŧįŧåæŊäŧäđïž äŧäđæŊįŽĶå·čŪĄįŪ ïžåĪįæ°å­ĶåŊđčąĄį SymPy Goal Goal Provide a symbolic manipulation library in Python. \SymPy is an open source Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely i

### sympy/solveset.py at master Â· sympy/sympy Â· GitHu

• Sympy too have a powerful solve function that can solve a lot of equations, but due to its complex API and inability to give infinite solutions, solveset was implemented. Solveset is under development since 2014 and since then solveset is being developed to solve varied type of equations
• ÐĄŅÐķÐĩŅŅ SymPy ÐžÐūÐķÐ―Ðū ÐšÐūÐžÐąÐļÐ―ÐļŅÐūÐēÐ°ŅŅ Ņ p.extend. ÐÐīÐ―Ð°ÐšÐū ŅÐļÐŋŅ ÐģŅÐ°ŅÐļÐšÐūÐē SymPy Ð―Ðĩ ÐēÐšÐŧŅŅÐ°ŅŅ ŅÐūŅÐĩŅÐ―ŅÐĩ ÐģŅÐ°ŅÐļÐšÐļ, ŅŅÐū ÐēÐ°Ðž Ðļ Ð―ŅÐķÐ―Ðū ÐīÐŧŅ ÐšŅÐļŅÐļŅÐĩŅÐšÐļŅ ŅÐūŅÐĩÐš. Ð ŅÐ°ÐšÐļŅ ŅÐŧŅŅÐ°ŅŅ ŅÐŧÐĩÐīŅÐĩŅ ÐļŅÐŋÐūÐŧŅÐ·ÐūÐēÐ°ŅŅ matplotlib Ð―Ð°ÐŋŅŅÐžŅŅ, ŅŅÐū SymPy ÐąŅÐīÐĩŅ ÐīÐĩÐŧÐ°ŅŅ Ðē ÐŧŅÐąÐūÐž.
• sympy.utilities.autowrap uses codegen, and codegen uses the code printers. sympy.utilities.autowrap does everything: it lets you go from SymPy expression to numerical function in the same Python process in one step. codegen is actual code generation, i.e., to compile and use later, or to include in some larger project.. The code printers translate the SymPy objects into actual code, like abs(x.
• import sympy s = 'l_1 theta_dd_1 m_1 m_2 l_2 theta_dd_2 theta_1 theta_2 theta_d_2 theta_d_1 g' l_1, theta_dd_1, m_1, m_2, l_2, theta_dd_2, theta_1, theta_2, theta_d_2, theta_d_1, g = sympy. symbols (s) expr1 = l_1 * theta_dd_1 * (m_1 + m_2) + m_2 * l_2 * (theta_dd_2 * sympy. cos (theta_1-theta_2) + theta_d_2 ** 2 * sympy. sin (theta_1-theta_2)) + (m_1 + m_2) * g * sympy. sin (theta_1) expr2 = m_2 * l_2 * theta_dd_2 + m_2 * l_1 * (theta_dd_1 * sympy. cos (theta_1-theta_2)-theta_d_1.
• SymPy has facilities for solving ordinary differential equations. The key is to create a symbolic function expression using SymFunction. Again, this may be done through: julia> F = SymFunction(F) F With this, we can construct a differential equation. Following the SymPy tutorial, we solve $f''(x) - 2f'(x) + f(x) = \sin(x)$
• About Me: Introduction Name : Muhammed Abdul Quadir Owais (MaqOwais) University : University College Of Engineering Osmania University <http://uceou.edu/> Major.
• SymPy Modules ReferenceÂķ. Because every feature of SymPy must have a test case, when you are not sure how to use something, just look into the tests/ directories, find that feature and read the tests for it, that will tell you everything you need to know.. Most of the things are already documented though in this document, that is automatically generated using SymPy's docstrings

Welcome to SymPy's documentation!Âķ SymPy is a Python library for symbolic mathematics. If you are new to SymPy, start with the Tutorial. This is the central page for all of SymPy's documentation. Contents SymPy is an open source computer algebra system written in pure Python. It is built with a focus on extensibility and ease of use, through both interactive and programmatic applications. These characteristics have led SymPy to become a popula python code examples for sympy.IndexedBase. Learn how to use python api sympy.IndexedBas SymPy introduced the solveset function for such scenarios. The answer now will be an infinite set, suitably described. To solve an expression in another variable, we specify it through the second argument: out = solve(x^2 + y^2 - 1, y) $\left[ \begin{array}{r}- \sqrt{1 - x^{2}}\\\sqrt{1 - x^{2}}\end{array} \right]$ This returns a vector of two symbolic answers, as the expression being. Ou seja, encontrarÃĄ os valores de x=2 e x=-4 que resolvem a equaÃ§ÃĢo. De forma dinÃĒmica, vocÃŠ pode utilizar a biblioteca sympy para isso. import sympy x = sympy.symbols ('x') A = x**2 + x - 2 B = 6 - x equation = sympy.Eq (A, B) print (sympy.solveset (equation)) # FiniteSet (-4, 2

The crux of the problem is that it seems difficult (impossible?) to have Sympy find a solution to such a multivariate integer problem and meaningfully constrain it to known bounds, so I'm left doing the brute-force approach: iterate through every possible value of every variable, and only when a (probably invalid) selection of variable values has been substituted can I ask Sympy to tell me. from sympy.ntheory.modular import * äļ­å―åĐä―åŪįč§Ģåä―æđįĻïžæĻĄæ°éäščīĻïžåäļäļŠæ°äļšæĻĄæ°ïžåäļäļŠæ°äļšä―æ°ïžčŋåįŽŽäļäļŠæ°äļšįŧæïžïž crt([99, 97, 95], [49, 76, 65]

### 3.2. Sympy : Symbolic Mathematics in Python â Scipy ..

We can try SymPy's solveset: S = {2nÏ: n â Z} âŠ {2nÏ + Ï: n â Z}. The nuisance with this approach is that you have to make many imports by hand.. it is sometimes helpful to use the function sympy.sympify, as in sympify (sin (x) - cos (pi/2 + x)), which does the imports automatically Aside from the various solving methods, there are also some meta-hints that you can pass to dsolve(): default: This uses whatever hint is returned first by classify_ode(). This i SymPyæŊįŽĶå·æ°å­ĶįPythonåšãåŪįįŪæ æŊæäļšäļäļŠåĻåč―įčŪĄįŪæšäŧĢæ°įģŧįŧïžåæķäŋæäŧĢį įŪæīãæäšįč§ĢåæĐåą äļãåŪčĢ pip install sympy ä―ŋįĻsolveïžïžæĨæąč§ĢäŧĢæ°æđįĻã solveset() č§ĢåģååéæđįĻ sympy.solvers.solveset.linsolve() č§Ģåģįšŋæ§æđįĻįŧčäļæŊsolve() sympy.solvers.solveset.nonlinsolve() č§Ģåģéįšŋæ§æđįĻįŧįéŪéĒ. The solveset function is only for a single equation so you would have to encode the inequality constraints in the domain somehow (which is not so easy for the last constraint you have shown). There has been discussion recently on this last about adding a solver for systems of inequalities. -- Oscar -- You received this message because you are subscribed to the Google Groups sympy group. To. Hilfe bei der Programmierung, Antworten auf Fragen / Python / Python - Sympy Minima und Maxima - Python, Sympy, KalkÃžl. Python - Sympy Minima und Maxima - Python, Sympy, Calculus . Ich versuche Sympys KalkÃžlfunktionen zu lernen und komme so weit wie mÃķglich, die Wurzeln der zweiten Ableitung fÃžr die kritischen Punkte der Extrema zu erhalten: numpy als np importieren von numpy import.

### sympy/sympy - Gitte

įŽŽäļį§æđæģåĪąčīĨįïžįĻsympy. į―äļįå°äšščŊīsympyæąæđįĻåūåĨ―įĻïžįĻäšsympy.solve äŧĨåsympy.solvesetååįéčŊŊïžčēäžžæŊčŊĨå―æ°æ æģč§Ģåģéįšŋæ§æđįĻã čŊĨåå·ä―æäđįĻæĨåŪį°æąč§Ģéįšŋæ§æđįĻčŋæēĄæ·ąįĐķïžäđčŪļäŧĨåäžčĄĨäļã posted @ 2019-08-25 21:02 éŽžéŽžææ éčŊŧ(3511) čŊčŪš(1) įžčū æķč. å·æ°čŊčŪš å·æ°éĄĩéĒ čŋåéĄķéĻ. ããŪãããŦãsympyã§ãŊ$\sqrt{2}^2=2$ãåūãããåŊūčąĄãĻããĶ$\sqrt{2}$ãåšåããĶãããpythonãŪæĻæšsqrtéĒæ°ãŊ$\sqrt{2}$ãŪčŋäžžåĪãčŋããĶãããūãã SymPy mapping with NumPy amin is not correct. #10444: Integration of summation type expressions. Fixes #7827 #10460: Solveset is now able to solve XFAIL test_issue_failing_pow. assert solveset(x**(S(3)/2) + 4, x, S.Reals) == S.EmptySet. #10482: This is able to give solutions in reduced/simplified and known easy form in many cases. Fixes #9824. äŧåãŊSymPyãįĻããæđįĻåžãŪč§ĢãéĢįŦæđįĻåžãŪč§ĢãæąããæđæģãŦãĪããĶįīđäŧããã ãĪããĨããŠãååŋéē æđįĻåžãč§ĢããŦãŊsolveset(æđįĻåž,č§ĢãåĪæ°) ãįĻããæđįĻåžãŊEq()ãįĻããĶåŪįūĐãããäūãã°äļãŪæđįĻåžãč§ĢããŦãŊ. solveset(Eq(a*x+b,c),x) >{-(b - c)/a} ãūãsolveset(æđįĻåž=0,x)ãĻããĶãããã solveset(a. from sympy import solveset, S from sympy.abc import x from sympy import init_printing init_printing() åŊŦåĻå·ĶæŽį·ĻčžŊåĻčĢĄïžįķåūå­æŠïžåäļåæŠåïžäūåĶéčĢĄįĻ findroot.py åįšæŠåã įķåūåéŧ Run ææ F5 éĩïžįĻåžå°ąæå·čĄïžå°äŧĨäļįæäŧĪåĻ IPython console äļ­å·čĄãéææįå° IPython äļ­åšįū.

### Sympy solve system of equations - Professional

I tried using sympy-solve and sympy-solveset, and that didn't work either. I plan to raise questions regarding sympy on stackexchange, but if anyone has helpful guidelines on using sagemath's solve vs sympy-solve, that'd be greatly appreciated. My general experience has been that sympy-solve is a lot more capable than sagemath's solve python code examples for sympy.sets.sets.EmptySet. Learn how to use python api sympy.sets.sets.EmptySe The pytest package and tool supports regression testing and test driven development. #!/usr/bin/env python from sympy.solvers import solveset from sympy import Symbol, Interval, pprint x = Symbol('x') sol = solveset(x**2 - 1, x, Interval(0, 100)) print(sol) With solveset(), we find a solution for the given interval. \$ solving3.py {1} This is the output. SymPy sequence . Sequence is an. Pastebin.com is the number one paste tool since 2002. Pastebin is a website where you can store text online for a set period of time ãããŊãéĒæ°solvesetïžïžãä―ŋįĻããĶSymPyã§č§ĢæąšãããūããSolvestãŊ2ãĪãŪããĐãĄãžãŋãåããūãïž 2ãĪãŪããĐãĄãžãŋããĻãEqéĒæ°ïžæđįĻåžãĻæđįĻåžãį­ããããåŋčĶãããåĪ; č§ĢæąšããããĻããĶããåĪæ°; å°éĒæ°ã0ãŦį­ãããĻããŦsolvsetãä―ŋįĻããĶxåĪãčĶãĪãããĻãæŽĄãŪãããŦãŠããūãã answer = sympy.

### Gleichungen - uni-goettingen

Just one think I had to use sympy.solveset() instead of sympy.solve() in line 29. This comment has been minimized. Sign in to view. Copy link Quote reply Owner Author tcibinan commented Jul 15, 2020 @JensKue I'm so glad that it helped you! sympy is such a powerful tool yet pretty difficult to use. Sign up for free. Use dense_output and events to find position, which is 100, at the apex of the cannonball's trajectory. Apex is not defined as terminal, so both apex and hit_ground are found. There is no information at t=20, so the sol attribute is used to evaluate the solution

• Jacques' Wein Depot Cabernet Sauvignon.
• Marktkauf Angebote ab Montag.
• Spiele fÃžr Katzen App.
• Bewusstseinsstufen Wikipedia.
• Wandermarken.
• GesprÃĪchsthemen Jugend.
• Politik im Ausland studieren.
• MÃĪnnerschnupfen lied Text.
• Soziale Ungleichheit im Alltag.
• Riesenkraken Mythos.
• Restaurant Moon Amsterdam.
• Install Nmap Windows.
• WM 2022 Qualifikation Spielplan Deutschland.
• Domkeller MeiÃen veranstaltungen.
• MehrsÃĪtziges TonstÃžck.
• Russland in der EU.
• Netzlaufwerk aktivieren.
• Zirkow RÃžgen Karte.
• Bin ich kontrollsÃžchtig Test.
• Kunststoff Schaltschrank mit Sichtfenster.
• Best streaming CPU 2021.
• Landwirtschaftskammer NÃ Rechtsberatung.
• Sieg Reha GmbH DickstraÃe Hennef Sieg.
• SonicWALL Configuration.
• Joachim Ringelnatz Reisegeldgedicht.
• UNGER osmose Set.
• IdentitÃĪtsprinzip Piaget.
• Wie lange halten ZÃĪhne durchschnittlich.
• Hamlet akt 2 Szene 2 vers 48.
• Philips Soundbar htl2163b Remote control.
• Die EntfÃžhrung aus dem Serail Klassenarbeit.
• 1/8 npt male to 1/8 npt male.
• Daylight's End trailer.
• Fachgymnasium Rostock.
• Clash of clans classes.
• Mass Effect 2 mod Manager.